Uncertainty analysis of earthquake source parameters determined from InSAR: A simulation study
نویسندگان
چکیده
[1] We assessed the accuracy of earthquake source parameters inverted from simulated Interferometric Synthetic Aperture Radar (InSAR) data. Using focal mechanisms of Australian earthquakes (1959 to the present), we simulated synthetic two-pass InSAR observations with realistic spatial noise derived from the characteristics of actual ERS-2 and ENVISAT InSAR data observed over Australia. The precision of two-pass satellite SAR interferometry with ERS-2 and ENVISAT SAR data in the Australian region can approach ±2 mm (1s) and is routinely at the ±4 mm level. The use of spatially correlated observational weights has minimal impact on the accuracy of earthquake source parameters inverted from InSAR data. In most cases single geometry (i.e., ascending or descending) InSAR observations can be used to accurately determine earthquake source parameters, although typically a combined geometry reduces the source parameter uncertainties by a factor of 1.5. In general, earthquakes of magnitude <4.8 are unlikely to be observable by InSAR although very shallow events would be detectable. InSAR is insensitive to magnitude 6.2 earthquakes deeper than 10 km, and magnitude 5.5 deeper than 6 km. For earthquake magnitudes 5.8 (average depth 6.5 km) we could estimate the epicenter of the rupture with an average accuracy of 0.25 km, depth to within 0.5 km and the fault orientation to better than 2 . Our findings, based on simulated Australian earthquakes, are representative of typical intraplate earthquakes and would be valid in many other regions. To date no actual earthquakes have been observed by InSAR in Australia.
منابع مشابه
Combination of Artificial Neural Network and Genetic Algorithm to Inverse Source Parameters of Sefid-Sang Earthquake Using InSAR Technique and Analytical Model Conjunction
In this study, an inversion method is conducted to determine the focal mechanism of Sefid-Sang fault by comparing interferometric synthetic aperture radar (InSAR) technique and dislocation model of earthquake deformation. To do so, the Sentinel-1A acquisitions covering the fault and its surrounding area are processed to derive the map of line of sight (LOS) displacement over the study area. The...
متن کاملSystematic comparisons of earthquake source models determined using InSAR and seismic data
a r t i c l e i n f o Robust earthquake source parameters (e.g., location, seismic moment, fault geometry) are essential for reliable seismic hazard assessment and the investigation of large-scale tectonics. They are routinely estimated using a variety of data and techniques, such as seismic data and, more recently, Interferometric Synthetic Aperture Radar (InSAR). Comparisons between these two...
متن کاملSAR Interferometry, Bayesian inversion, Sarpol-e zahab earthquake, Fault source parameters
Abstract Earthquakes occur at teh border of teh plates and faults, causing financial and casual damages. Teh study of earthquakes and surface deformation is useful in understanding teh mechanism of earthquakes and managing teh risks and crises of earthquakes. A fault can be specified by its geometric source parameters. In Okada’s definition, these parameters are length, width, depth, strike, di...
متن کاملGlobal compilation of interferometric synthetic aperture radar earthquake source models: 2. Effects of 3‐D Earth structure
[1] We carry out long‐period surface wave centroid moment tensor (CMT) inversions using various global tomographic models and two different forward modeling techniques for 32 large earthquakes previously studied using interferometric synthetic aperture radar (InSAR) data. Since InSAR methods provide an alternative and independent way of locating and characterizing shallow continental earthquake...
متن کاملSimulation of artificial earthquake records using Point Source method with applying amplification effects
Today to design large hydraulic structures like dams, application of dynamic analysis in time domain seems very interesting due to its benefits. For applying such analysis, appropriate earthquake records that are compatible to site conditions are necessary for designer. Such information is rarely recorded for a dam site during an earthquake and usually the amount of recorded data is not suffici...
متن کامل